Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

Christopher C. Harding, a* David J. Watkin, a Nicola K. Sawyer, b Sarah F. Jenkinson and George W. J. Fleet

^aDepartment of Chemical Crystallography, Chemical Research Laboratory, Oxford University, Mansfield Road, Oxford OX1 3TA, England, and ^bDepartment of Organic Chemistry, Chemical Research Laboratory, Oxford University, Mansfield Road, Oxford OX1 3TA, England

Correspondence e-mail: christopher.harding@seh.ox.ac.uk

Key indicators

Single-crystal X-ray study $T=190~\mathrm{K}$ Mean $\sigma(\mathrm{C-C})=0.003~\mathrm{\mathring{A}}$ R factor = 0.037 wR factor = 0.092 Data-to-parameter ratio = 8.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

2-C-Methyl-D-allono-1,4-lactone

The relative stereochemistry at the quaternary C atom in the title compound, $C_7H_{12}O_6$, a 1,4-lactone formed from a protected p-ribonolactone, is firmly established by X-ray crystallographic analysis.

Received 15 March 2005 Accepted 19 April 2005 Online 27 April 2005

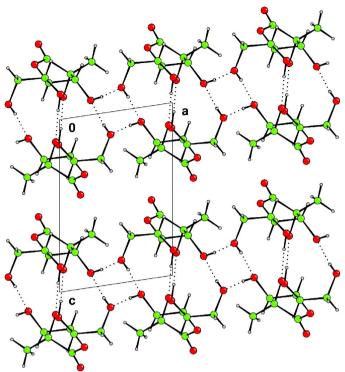
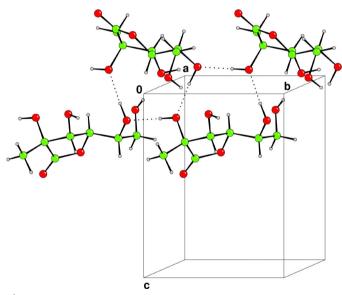
Comment

The potential of the Kiliani ascension of ketoses to provide readily available branched scaffolds has been recognized (Harding *et al.*, 2005; Hotchkiss *et al.*, 2004; Shallard-Brown *et al.*, 2004); such materials are likely to be of value as a new family of chirons. A further class of branched carbohydrate building blocks may be available from the reaction of cyanide with 1-deoxyketoses, themselves prepared by addition of organometallic reagents to sugar lactones.

For example, when such a sequence was performed on the acetonide of D-erythronolactone (1), 2-*C*-methyl-D-arabinonolactone (2) was formed (Punzo *et al.*, 2005), in which the 2,3-diol unit is *trans*; none of the epimeric ribonolactone was isolated during the course of the synthesis. When a similar synthetic sequence was applied to the protected D-ribonolactone (3), the crystalline product (4) was isolated, in which the 2,3-diol unit is *cis*. There is no reliable spectroscopic technique to establish the relative stereochemistry in (4), so its relative configuration was unambiguously defined by X-ray crystallographic analysis; the absolute stereochemistry was defined by the use of D-ribonolactone as a starting material.

Figure 1
The molecular structure of (4), with displacement ellipsoids drawn at the 50% probability level.

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

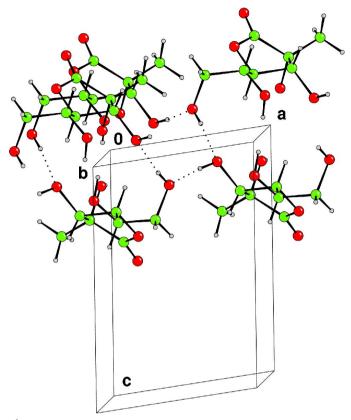

Figure 2 Packing diagram for the title compound, viewed down the b axis. Dashed lines indicate hydrogen bonds.

Figure 3 Hydrogen bonding (dashed lines): the zigzag network, forming columns of molecules.

The reactions are being studied further in order to understand the difference in the stereochemical outcome of the two sequences.

The crystal structure is made up of layers of strongly hydrogen-bonded molecules which lie in the ab plane. The layers are made up of columns of molecules along the b axis held together by a zigzag chain of hydrogen bonds, which are in turn tied together by a helical hydrogen-bonding network (Figs. 3 and 4).

Figure 4Hydrogen bonding (dashed lines): the helical network which links the columns of molecules together to form a sheet.

Experimental

Crystals of the title compound were obtained by evaporation of a solution in an ethyl acetate/cyclohexane mixture, yielding colourless crystals. The full synthetic procedure will be published separately (Jenkinson *et al.*, 2005).

Crystal data

$C_7H_{12}O_6$	$D_x = 1.493 \text{ Mg m}^{-3}$
$M_r = 192.17$	Mo $K\alpha$ radiation
Monoclinic, P2 ₁	Cell parameters from 1283
a = 6.1521 (5) Å	reflections
b = 7.5495 (7) Å	$\theta = 5-27^{\circ}$
c = 9.3055 (8) Å	$\mu = 0.13 \text{ mm}^{-1}$
$\beta = 98.501 (5)^{\circ}$	T = 190 K
$V = 427.45 (6) \text{ Å}^3$	Block, colourless
Z = 2	$0.20\times0.10\times0.10~\text{mm}$

Data collection

Nonius KappaCCD diffractometer	$R_{\rm int} = 0.026$
ω scans	$\theta_{\rm max} = 27.5^{\circ}$
Absorption correction: none	$h = -7 \rightarrow 7$
2940 measured reflections	$k = -9 \rightarrow 8$
1025 independent reflections	$l = -11 \rightarrow 12$
905 reflections with $I > 2\sigma(I)$	

Refinement

Refinement on F^2	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.037$	$w = 1/[\sigma^2(F^2) + (0.04P)^2],$
$wR(F^2) = 0.092$	where $P = [\max(F_o^2, 0) + 2F_c^2]/3$
S = 1.05	$(\Delta/\sigma)_{\rm max} < 0.001$
1025 reflections	$\Delta \rho_{\text{max}} = 0.27 \text{ e Å}^{-3}$
118 parameters	$\Delta \rho_{\min} = -0.22 \text{ e Å}^{-3}$

organic papers

Table 1 Hydrogen-bonding geometry (Å, °).

$D-H\cdots A$	<i>D</i> -H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	D $ H$ $\cdot \cdot \cdot A$
O12-H4···O7i	0.88	1.84	2.723 (2)	178
$O11-H6\cdots O6^{ii}$	0.96	1.73	2.681 (2)	175
$O6-H8\cdots O11^{iii}$	0.83	1.95	2.778 (2)	174
$O7-H14\cdots O12^{iii}$	0.96	1.84	2.791(2)	175

Symmetry codes: (i) x, y - 1, z; (ii) x - 1, y, z; (iii) $-x, \frac{1}{2} + y, -z$.

All H atoms were observed in a difference electron density map and were refined using slack restraints to optimize their geometry [C-H = 0.98 Å, O-H = 0.82 Å, with $U_{\rm iso}({\rm H})$ = 1.2 $U_{\rm eq}({\rm C})$ or 1.5 $U_{\rm eq}({\rm O})$], then made to ride on their parent atoms. In the absence of significant anomalous scattering effects, Friedel pairs were merged. The absolute configuration is known from the synthesis.

Data collection: *COLLECT* (Nonius, 1997); cell refinement: *DENZO/SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *DENZO/SCALEPACK*; program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1994); program(s) used to refine structure: *CRYSTALS* (Betteridge *et al.*, 2003); molecular graphics:

CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.

References

Altomare, A., Cascarano, G., Giacovazzo G., Guagliardi A., Burla M. C., Polidori, G. & Camalli, M. (1994). *J. Appl. Cryst.* **27**, 435.

Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.

Harding, C. C., Watkin, D. J., Cowley, A. R., Soengas, R., Skytte, U. P. & Fleet, G. W. J. (2005). Acta Cryst. E61, o250–o252.

Hotchkiss, D., Soengas, R., Simone, M. I., van Ameijde, J., Hunter, S., Cowley, A. R. & Fleet, G. W. J. (2004). *Tetrahedron Lett.* **45**, 9461–9464.

Jenkinson, S. F., Sawyer, N. K. & Fleet, G. W. J. (2005). *Tetrahedron Lett.* In preparation.

Nonius (1997). COLLECT. Nonius BV, Delft, The Netherlands.

Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307–326. New York: Academic Press.

Punzo, F., Watkin, D. J., Jenkinson, S. F. & Fleet, G. W. J. (2005). *Acta Cryst.* E**61**, o326–o327.

Shallard-Brown, H. A., Harding, C. C., Watkin, D. J., Soengas, R., Skytte, U. P. & Fleet, G. W. J. (2004). Acta Cryst. E60, o2163–o2164.

Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.